

Billy in the second of the sec

Section 2: Microscopic World I

Part 1

Billy Sir Whatsapp: 9341 0473

Section 02

@ Delta Science Education

Microscopic World Part 1

1. Atomic Structure

A. Basic structure of an atom

- Atom: the smallest particle that can still recognize what the
- An atom consists of 3 types of subatomic particles:

Subatomic particles	Proton, p⁺	Neutron, n	Electron, e
Relative mass	1	1	≈ 0 (1/1837)
Relative charge	+1	0	-1
Position	Stationary in	n the nucleus	In the electron cloud, revolving round the nucleus

Hydrogen atom

Helium atom

- **Atomic number** of an atom = number of
 - Each element has a UNIQUE atomic number: e.g. Li must be 3 and 3 must be Li; Cl must be 17 and 17 must be Cl
- Mass number of an atom = number of + number of
- Note:
 - 1. The size of an atom is mainly governed by the
 - 2. Most of the space of an atom is the electron cloud and is actually

since the

3. An atom MUST be

Section 02

@ Delta Science Education

Microscopic World Part 1

Notation of an atom:

Examples that you must fully understand

1. Fill in the table below:

	²³ ₁₁ Na	⁶⁵ Cu		^{238}U
# of p+			18	
# of e ⁻		29		
# of <i>n</i>			22	

- 2. The atomic number of an element W is 20 and the mass number of it is 41. The atom has
 - A. 20 protons, 21 neutrons, 20 electrons
 - B. 20 protons, 21 neutrons, 21 electrons
 - C. 20 protons, 41 neutrons, 20 electrons
 - D. 41 protons, 20 neutrons, 41 electrons
 - E. 21 protons, 20 neutrons, 21 electrons
- 3. Which of the following species contains the same number of neutrons as ${}^{20}F$?
 - **A.** $_{12}^{26}Mg$
 - **B.** $_{10}^{21}Ne$
 - c. $^{33}_{16}S$
 - **D.** $^{29}_{14}Si$

Whatsapp: 9341 0473

Section 02

@ Delta Science Education

Microscopic World Part 1

4. An atom must contain

(1) proton

(2) neutron

(3) electron

5. You are provided with the following stable atoms as reference:

$${}_{1}^{1}H$$
 ${}_{2}^{3}He$ ${}_{6}^{12}C$ ${}_{7}^{14}N$ ${}_{82}^{206}Pb$

Which of the following atoms is/are impossible or not stable or not correct?

(1) ${}^{12}_{7}C$

(2) $^{14}_{6}N$

(3) ${}_{2}^{4}He$

(4) $^{10}_{6}C$

(5) $^{16}_{6}C$

(6) $^{15}_{7}N$

(7) ${}_{1}^{2}H$

(8) $^{164}_{82}Pb$

(9) $^{238}_{82}Pb$

B. Isotopes

are different of the same lsotopes have the same number of but different number of .

Below shows the two isotopes of Chlorine:

35Cl Cl-35

37C1 CI-37

■ Isotopes have exactly the same properties, since

■ Isotopes have different properties. e.g. mass, mp, bp, radioactivity, as they have different mass.

■ Isotopes can only be separated by

Section 02

@ Delta Science Education

Microscopic World Part 1

Examples that you must fully understand

1. There are a few atoms below:

Atom	Atomic no.	Mass no.	# of e
٧		40	20
W	18	40	
x	20	40	
Y		44	20
Z		96	44
F	42	96	42

Which of the following pairs are isotopes?

A. V&X

B. W&X

C. W&Z

D. X&Y

E. Y&Z

F. Z&F

2. There are three naturally occurring isotopes of the element Carbon:

	Relative / % / natural abundance	Radioactive?
$^{12}_{6}C$	98.9%	Stable
$^{13}_{6}C$	1.1%	Stable
$^{14}_{\downarrow}C$	Very few	Radioactive

(e)	What	350	icoto	noe?
1211	WINAI	are	15010	Desi

Isotopes are atoms of the _____ which have the same number of _____ but different number of _____.

(b) What is relative abundance?

Relative abundance describes the of isotopes of an element in nature.

- (c) Is it possible to separate the three isotopes by chemical reaction?
- (d) $^{14}_{\ 6}C$ is radioactive. One of the neutron in its nucleus emits an electron and becomes a proton, write an equation describing it.

Э

Whatsapp: 9341 0473

Website: phychembillyli.hk

Section 02

@ Delta Science Education

Microscopic World Part 1

C. Relative isotopic mass and Relative atomic mass

Carbon-12 scale : the mass of a ${}^{12}_{6}C$ atom is defined to have a relative mass of							
Relative isotopic mass of a particular isotope on the ¹² C = 12.00 scale		ned as the mass of one atom of that					
Relative isotopic	Relative isotopic mass of an isotope ≈ of the isotope						
Relative atomic mass of an that element on the ¹² C = 12.00 Below shows the two naturally	scale.	s of all naturally occurring isotopes of					
Isotopes	35 ₁₇ CI CI-35	³⁷ ₁₇ Cl Cl-37					
Relative abundance	75%	25%					
Relative isotopic mass							
Relative atomic mass of Chlorine							
Note:							
1. Relative isotopic mass is ro	ughly an integer.						
2. Relative atomic mass is usu	ually NOT an integer.						
3. Both of them have NO unit.							
Lxamp	olos that you must fully unde	orsland					
Which of the following statements	is / are correct?						
(1) On ¹² C = 12.00 scale, the rel	ative isotopic mass of carbon-14 is 1	4.0 g.					
(2) The magnitude of the relation	ve isotopic mass of an isotope is roug	ghly equal to the mass number of					
that isotope.							
3) The relative isotopic mass of an isotope is equal to the number of neutrons in the isotope.							

9

Whatsapp: 9341 0473 Website: phychembillyli.hk

Section 02

@ Delta Science Education

Microscopic World Part 1

2. Fill in the blanks of the table below:

Element	Atomic number	Isotope (Relative abundance)	Relative atomic mass
		¹H (99.985%)	
Н	1	² H (0.015%)	
		³H (Trace)	
He	2	³ He (0.000137%)	
пе	2	⁴ He (99.999863%)	
В	5	¹⁰ B (%)	10.81
	3	¹¹ B (%)	10.01
		²⁴ Mg (78.99%)	
Mg	12	²⁵ Mg (10%)	
		Mg (11.01%)	
CI	17	³⁵ Cl (3)	
OI .	13	³⁷ Cl (1)	

Whatsapp: 9341 0473

Website: phychembillyli.hk

Section 02

@ Delta Science Education

Microscopic World Part 1

- 3. Element X occurs in nature as two isotopes, ⁷⁹X and ⁸¹X. If the relative atomic mass of X is 79.9, which of the following statements is / are correct?
 - A. The isotopes can be separated by chemical methods.
 - B. The abundance of 79X is more than the abundance of 81X.
 - C. The relative atomic mass is 79.9 q.
- 4. An element has 3 naturally occurring isotopes ²⁰X, ²¹X and ²²X. The ratio of abundance of ²⁰X and ²²X is 2 to 1 and the relative atomic mass of X is 20.86. Calculate the % abundance of each isotope of X.

Therefore, the % abundance of

5. The relative atomic mass of a natural sample of copper is 63.6. Which of the following graphs shows the relative abundance of the isotopes?

A.

В.

C.

D.

Whatsapp: 9341 0473

Website: phychembillyli.hk

Section 02

@ Delta Science Education

Microscopic World Part 1

Electronic arrangements of atoms D.

Electrons move round the nucleus in electron shell.

Electronic arrangement = the way that the electrons in an atom is arranged

Maximum number of electrons in each electron shell =

Electron shell (n)	Max number of e
First (n = 1)	
Second (n = 2)	
Third (n = 3)	
Forth (n = 4)	

Whatsapp: 9341 0473

Section 02

Microscopic World Part 1

@ Delta Science Education

■ Electronic arrangement of the first 20 elements:

Element	Symbol	Atomic number	e [.] number	Electronic arrangement
Hydrogen		1	1	
Helium		2	2	
Lithium		3	3	
Beryllium		4	4	
Boron		5	5	
Carbon		6	6	
Nitrogen		7	7	
Oxygen		8	8	
Fluorine		9	9	
Neon		10	10	
Sodium		11	11	
Magnesium		12	12	
Aluminium		13	13	
Silicon		14	14	
Phosphorus		15	15	
Sulphur		16	16	
Chlorine		17	17	
Argon		18	18	
Potassium		19	19	
Calcium		20	20	

Section 02

@ Delta Science Education

Microscopic World Part 1

	Examples that you must fully understand							
٦.	In early 19th century, an English scientist, John Dalton, proposed the Atomic Theory. Which of the idea(s) of his							lea(s) of his
	atomic theory is / are known to be incorrect by the current scientific knowledge?							
	(1) All atoms of the same element are identical.							
	(2) Different	elements hav	ve different t	ypes of atom:	5.			
	(3) Atoms ar	e indivisible.						
	(4) Atoms of	one element	always diffe	r in mass fron	n those of and	ther elemen	t.,	
	(5) All atoms	of the same	element have	the same pr	operties. Che	mical? Physic	al?	
	(6) Chemical	reactions occ	cur when ato	ms are rearra	nged.			
	(7) Atoms of	one element	cannot be co	nverted to at	oms of anoth	er element.		
2.	This question	is about L ithiu	m, Sodium and	d Potassium.				
	(a) State one	difference b	etween their	electronic st	ructures.			
	The have	e different n	umber of]		
	(b) State one	similarity in	their electro	nic structures	s.			
	T i I				î	·		
	The have the same number of outermost electron shell.							
	(c) Explain w	hy the electr	onic arrangei	ment of Potas	ssium is 2,8,8	,1 instead of	2,8,9.	
3.	Write down th	e electronic ar	rangements fo	or the following	g elements:			
							46	He
	Li	Ве	В	С	N	0	F	Ne
	Na	Mg	Al	Si	P	s	CI	Ar
	į		3			2		2
	K	Ca						

Whatsapp: 9341 0473

Section 02

@ Delta Science Education

Microscopic World Part 1

2. Periodic Table

- The elements are arranged in order of increasing
- Periodic similarity in the properties of elements will be observed.

Examples that you must fully understand

- Below shows the electron diagram of an atom of element X. Which of the following statements concerning X is / are correct?
 - (1) This atom contains 14 protons.
 - (2) X in a period 3 element.
 - (3) X is in group IV.
 - (4) The mass number of this atom is 14.
- 2. The atomic number of iodine is 53. Deduce the electronic arrangement of it.

Section 02

@ Delta Science Education

Microscopic World Part 1

A. Period

- Period (horizontal row) number = number of .
- Change in physical properties of elements across a period (from left to right):

1 H 53

- Metals >> Semi-metals >> Non-metals
- Atomic radius
 - As nuclear charge increases across a period, the between the nucleus and the electron cloud.

Melting point and boiling point:

- Electronegativity increases
 - > As atomic radius decreases, stronger attraction between and the nucleus

Section 02

@ Delta Science Education

properties.

Microscopic World Part 1

B.	Grou	1170
	VIVI	-E-9-P

- Group (vertical column) number = equal to the
 Elements in a group show similar chemical properties:
 The ______ properties of an element mainly depend on ______
 Elements in the same group have the same no. of outermost e⁻, so they have _____ chemical
 - .
- Group names:

Group	Name
Ĩ	
II	
VII	
VIII/0	

- Change in physical properties of elements across a group (down the group):
 - Metallic character increases
 - Atomic radius increases
 - Due to increases in the number of
 - Melting point and boiling point
 - Group I and II: down the group
 - ➤ Group VII and VIII/0: down the group
 - Electronegativity decreases

Whatsapp: 9341 0473

Section 02

Microscopic World Part 1

@ Delta Science Education

1

C. Group I, Alkali Metals

	Lithium	Sodium	Potassium	Rubidium	Caesium			
	(Li)	(Na)	(K)	(Rb)	(Cs)			
Electronic arrangement	2,1	2,8,1	2,8,8,1	2,8,18,8,1	2,8,18,18,8,1			
Appearance	Shiny when frest	nly cut but soor	in air.	-				
Soft	Can be cut by a knife.							
Lower mp, bp than other metals	 Lower mp and bp when compared with other metals. down the group. 							
Low density	Low. Li, Na and	Low. Li, Na and K can float on water.						
Highly reactive	 Highly reactive, must be stored in paraffin oil to avoid reaction with air or water Reactivity down the group Reason: Metals react by as atomic size increases down the group distance between the outermost shell e⁻ and nucleus attraction between the outermost shell e⁻ and nucleus tendency to lose electron More reactive More reactive than alkaline earth metals (Group II) 							
Reaction with water	React vigorously $Na(s) + H_2O(l)$ - Metal floats; Hissing sounds; Colourless gas bubbles	Metal floats; N silvery ball; Hi Colourless ga	Metals melt into a ssing sounds; s bubbles; Metals Golden yellow flame	and metal Explosive read	solution.			
Reaction with halogens	React with halog $Na(s) + Cl_2(g)$	lens to form sal	29					

Section 02

@ Delta Science Education

Microscopic World Part 1

D. Group II, Alkaline Earth Metals

	Beryllium	Magnesium	Calcium	Strontium	Barium			
	(Be)	(Mg)	(Ca)	(Sr)	(Ba)			
Electronic arrangement	2,2	2,8,2	2,8,8,2	2,8,18,8,2	2,8,18,18,8,2			
Appearance	Shiny when fres	Shiny when fresh but will tarnish in air.						
Higher mp, bp than Group I) .							
Denser than Group I	All in water	All in water						
Less reactive than Group I	Reactivity down the group Less reactive than Reason: Metals react by losing electron As atomic size from group I to group II distance between the outermost shell e and nucleus decreases attraction between the outermost shell e and nucleus to lose electron Also, group II needs to lose outermost e instead of in group I Less reactive							
Reaction with water	and metal $Ca(s) + H_2O(l) - \frac{1}{2} \int_{-\infty}^{\infty} ds ds$	Ba can react with solution. Colourless gas to		7	hydrogen test-tube water funnel calcium metal			
Reaction with halogens	React with halog	gens to form salts	$s Mg(s) + Cl_2(g)$	$g) \longrightarrow MgCl_2(s)$				

Website: phychembillyli.hk

Section 02

@ Delta Science Education

Microscopic World Part 1

E. Group VII, Halogens

	Fluorine (F)	Chlorine (CI)	Bromine (Br)	lodine (I)	Astatine (At)	
Electronic arrangement	2,7	2,8,7	2,8,18,7	2,8,18,18,7	2,8,18,32,18,7	
Diatomic molecule	All of them are molecules = atoms join together to be					
Appearance (All coloured)	Pale yellow gas	Yellowish green gas	Dark red / brown liquid	Black / purple solid	Black solid	
Toxic	They are all toxic	(poisonous) and	smelly.			
Quite low mp, bp	Mp and bp	Mp and bp down the group.				
Density	Density increase	Density increases down the group				
Reactivity	 Reactivity down the group Reason: Halogens react by electron As atomic size increases down the group distance between the incoming er and nucleus attraction between the incoming er and nucleus likely to gain the incoming electron Less reactive 					
Reaction with sodium sulphite solution	All of the halogens react with sodium sulphite to give colourless products. $I_2(aq) + SO_3^{2-}(aq) + H_2O(l) {\longrightarrow} SO_4^{2-}(aq) + 2I^-(aq) + H^+(aq)$					

17

Website: phychembillyli.hk

Section 02

@ Delta Science Education

Microscopic World Part 1

F. Group VIII/0, Noble gases

	Helium (He)	Neon (Ne)	Argon (Ar)	Krypton (Kr)	Xenon (Xe)	
Electronic	2	2,8	2,8,8	2,8,18,8	2,8,18,18,8	
arrangement	Duplet Octet structure structure					
Reactivity Monatomic molecules	They are all inert / very unreactive / very stable due to their They generally DO NOT react with other elements. All of them are molecules =atom is already enough to be stable					
Appearance	All are colourless gases.					
Very low mp, bp	Mp and bp increases down the group.					
Density	 Density increases down the group He and Ne are less dense than air. Ar, Kr and Xe are denser than air. 					

	Helium (He)	Neon (Ne)	Argon (Ar)
Uses	To fill airship, weather balloon	To fill neon lamp in advertising sign	To fill light bulb
	ARLANDRE	PIZZA	
Reason	as He has a density lower than air and it is non-flammable	as Ne can produce an unmistakable bright reddish-orange light in an electric discharge tube	as Ar non-oxidizing and relatively abundant in air compared to other noble gases

Section 02

@ Delta Science Education

Microscopic World Part 1

Examples that you must fully understand

Nar	ne the element(s) in the Periodic Table which is / are					
(a)	Liquid:					
(b)	Gas:					
(c)	Metal (one):					
(d)	Semi-metal (one):					
(e)	Non-metal (one):					
(f)	Yellow solid:					
(g)	Needed to be stored under paraffin oil (one):					
(h)	Needed to be stored under water:					
(i)	Used to make lilac fireworks:					
(i)	Metal that can float on water:					
	Diatomic molecules (one):					
(I)	Monatomic molecules (one):					
(m)	Having stable electronic arrangement:					
(n)	That needs to gain e ⁻ and become stable (one):					
(o)	That needs to lose e ⁻ and become stable (one):					
(p)	Toxic (one):					
(q)	Non-metal that conduct electricity:					
(r)	Soft metal that can be cut by a knife (one):					
(s)	Used to fill airship:					
(t)	Having the highest boiling point across period 2:					
(u)	The most reactive when they react together (two elements):					

Section 02

@ Delta Science Education

Microscopic World Part 1

- 2. When move across a period, which of the following properties increase?
 - (1) Electronegativity
 - (2) Ability to attract an electron
 - (3) Number of outermost shell e
 - (4) Size of an atom
 - (5) Reactivity
 - (6) Electrical conductivity
 - (7) Melting point and boiling point
 - (8) Metallic character
- 3. When move down a group, which of the following properties increase?
 - (1) Electronegativity
 - (2) Ability to attract an electron
 - (3) Number of outermost shell e
 - (4) Number of electron shell in an atom
 - (5) Size of an atom
 - (6) Reactivity
 - (7) Electrical conductivity
 - (8) Melting point and boiling point
 - (9) Metallic character
- 4. Which of the following statements concerning noble gases is / are correct?
 - (1) All noble gases are inert because they have octet structure.
 - (2) All of them will never react with other elements.
 - (3) Their relative atomic masses increase down the group.
 - (4) They have a stable electronic arrangement.
 - (5) Their reactivity increases down the group.
 - (6) Their boiling point increases down the group.
 - (7) Some noble gases are coloured.
 - (8) They are diatomic molecules.

Section 02

@ Delta Science Education

Microscopic World Part 1

5.	Which of the following statements about the Periodic Table is correct?						
	(1) In any group, the atomic size of elements increases with the increasing atomic number.						
	(2) All Group 0 elements are non-metals and all elements with one outermost shell electrons are metals.						
	(3) In any periods (except Period 1), the metallic character of the elements increases with increasing atomic number.						
	(4) All Period 3 elements contain three filled electron shells.						
	(5) Melting point of elements increases across Period 2.						
	(6) Elements in a group have the same number of outermost shell electrons.						
	(7) Elements in the Periodic Table are arranged according to increasing atomic weight.						
6.	Mg and Ca have similar properties because						
	A. their atoms have the same atomic structure.						
B. their atoms have the same number of electron shells.							
	C. their atoms have the same number of electrons in their outermost shells.						
	D. their atoms have the same electronic arrangement.						
7.	This question is about Caesium (Cs).						
	(a) Which is more reactive? Cs or K? Explain briefly.						
	Both Cs and K belong to Group I. Reactivity of Group I elements].					
	As Cs is K, Cs is more .						
	(b) Write down the equation when Cs reacts with water.						
	(c) Which is more reactive? Cs or Barium (Ba)?						
	Reactivity of Group I elements is than the Group II elements in the same period.						
	Therefore, Cs, as a Group I element is than Ba which is in Group II.						
	(d) Which has a higher melting point? Cs or Li?						
	(e) Where should Cs be stored?						
	Cs should be stored in .						
	Os silvala de storea in						

Section 02

@ Delta Science Education

Microscopic World Part 1

- 8. Astatine is a Group VII element below iodine in the Periodic Table. Which of the following statements concerning astatine is incorrect?
 - A. Astatine is a solid under room conditions.
 - B. Astatine has 7 outermost electrons.
 - C. Astatine is colourless.
 - D. Astatine reacts with sodium.
 - E. Astatine molecule is diatomic.
- 9. Below shows magnified figures of some substances. Describe the figures with the help of the following terms:
 - (i) atom, monatomic molecule, diatomic molecule, polyatomic molecule
 - (ii) element, compound, mixture
 - (iii) solid, gas
 - (iv) metal, non-metal
 - (v) give examples

10. How many elements does ammonium dichromate [(NH₄)₂Cr₂O₇] consist of?

Whatsapp: 9341 0473

真・為你度身訂造