Billy in the second of sec Section 2: Microscopic World I Part 1 Billy Sir Whatsapp: 9341 0473 Section 02 #### @ Delta Science Education #### Microscopic World Part 1 #### 1. Atomic Structure #### A. Basic structure of an atom - Atom: the smallest particle that can still recognize what the - An atom consists of 3 types of subatomic particles: | Subatomic particles | Proton, p⁺ | Neutron, n | Electron, e | |---------------------|---------------|---------------|--| | Relative mass | 1 | 1 | ≈ 0 (1/1837) | | Relative charge | +1 | 0 | -1 | | Position | Stationary in | n the nucleus | In the electron cloud, revolving round the nucleus | Hydrogen atom Helium atom - **Atomic number** of an atom = number of - Each element has a UNIQUE atomic number: e.g. Li must be 3 and 3 must be Li; Cl must be 17 and 17 must be Cl - Mass number of an atom = number of + number of - Note: - 1. The size of an atom is mainly governed by the - 2. Most of the space of an atom is the electron cloud and is actually since the 3. An atom MUST be #### Section 02 #### @ Delta Science Education #### Microscopic World Part 1 #### Notation of an atom: #### Examples that you must fully understand #### 1. Fill in the table below: | | ²³ ₁₁ Na | ⁶⁵ Cu | | ^{238}U | |---------------------|--------------------------------|------------------|----|-----------| | # of p+ | | | 18 | | | # of e ⁻ | | 29 | | | | # of <i>n</i> | | | 22 | | - 2. The atomic number of an element W is 20 and the mass number of it is 41. The atom has - A. 20 protons, 21 neutrons, 20 electrons - B. 20 protons, 21 neutrons, 21 electrons - C. 20 protons, 41 neutrons, 20 electrons - D. 41 protons, 20 neutrons, 41 electrons - E. 21 protons, 20 neutrons, 21 electrons - 3. Which of the following species contains the same number of neutrons as ${}^{20}F$? - **A.** $_{12}^{26}Mg$ - **B.** $_{10}^{21}Ne$ - c. $^{33}_{16}S$ - **D.** $^{29}_{14}Si$ Whatsapp: 9341 0473 #### Section 02 #### @ Delta Science Education #### Microscopic World Part 1 4. An atom must contain (1) proton (2) neutron (3) electron 5. You are provided with the following stable atoms as reference: $${}_{1}^{1}H$$ ${}_{2}^{3}He$ ${}_{6}^{12}C$ ${}_{7}^{14}N$ ${}_{82}^{206}Pb$ Which of the following atoms is/are impossible or not stable or not correct? (1) ${}^{12}_{7}C$ (2) $^{14}_{6}N$ (3) ${}_{2}^{4}He$ (4) $^{10}_{6}C$ (5) $^{16}_{6}C$ (6) $^{15}_{7}N$ (7) ${}_{1}^{2}H$ (8) $^{164}_{82}Pb$ (9) $^{238}_{82}Pb$ # B. Isotopes are different of the same lsotopes have the same number of but different number of . Below shows the two isotopes of Chlorine: 35Cl Cl-35 37C1 CI-37 ■ Isotopes have exactly the same properties, since ■ Isotopes have different properties. e.g. mass, mp, bp, radioactivity, as they have different mass. ■ Isotopes can only be separated by #### Section 02 #### @ Delta Science Education #### Microscopic World Part 1 #### Examples that you must fully understand 1. There are a few atoms below: | Atom | Atomic no. | Mass no. | # of e | |------|------------|----------|--------| | ٧ | | 40 | 20 | | W | 18 | 40 | | | x | 20 | 40 | | | Y | | 44 | 20 | | Z | | 96 | 44 | | F | 42 | 96 | 42 | Which of the following pairs are isotopes? A. V&X B. W&X C. W&Z D. X&Y E. Y&Z F. Z&F 2. There are three naturally occurring isotopes of the element Carbon: | | Relative / % / natural abundance | Radioactive? | |-----------------------|----------------------------------|--------------| | $^{12}_{6}C$ | 98.9% | Stable | | $^{13}_{6}C$ | 1.1% | Stable | | $^{14}_{\downarrow}C$ | Very few | Radioactive | | (e) | What | 350 | icoto | noe? | |------|-------|-----|-------|------| | 1211 | WINAI | are | 15010 | Desi | Isotopes are atoms of the _____ which have the same number of _____ but different number of _____. (b) What is relative abundance? Relative abundance describes the of isotopes of an element in nature. - (c) Is it possible to separate the three isotopes by chemical reaction? - (d) $^{14}_{\ 6}C$ is radioactive. One of the neutron in its nucleus emits an electron and becomes a proton, write an equation describing it. Э Whatsapp: 9341 0473 Website: phychembillyli.hk #### Section 02 # @ Delta Science Education #### Microscopic World Part 1 # C. Relative isotopic mass and Relative atomic mass | Carbon-12 scale : the mass of a ${}^{12}_{6}C$ atom is defined to have a relative mass of | | | | | | | | |--|---|--|--|--|--|--|--| | Relative isotopic mass of a particular isotope on the ¹² C = 12.00 scale | | ned as the mass of one atom of that | | | | | | | Relative isotopic | Relative isotopic mass of an isotope ≈ of the isotope | | | | | | | | Relative atomic mass of an that element on the ¹² C = 12.00 Below shows the two naturally | scale. | s of all naturally occurring isotopes of | | | | | | | Isotopes | 35 ₁₇ CI CI-35 | ³⁷ ₁₇ Cl Cl-37 | | | | | | | Relative abundance | 75% | 25% | | | | | | | Relative isotopic mass | | | | | | | | | Relative atomic mass of Chlorine | | | | | | | | | Note: | | | | | | | | | 1. Relative isotopic mass is ro | ughly an integer. | | | | | | | | 2. Relative atomic mass is usu | ually NOT an integer. | | | | | | | | 3. Both of them have NO unit. | | | | | | | | | Lxamp | olos that you must fully unde | orsland | | | | | | | Which of the following statements | is / are correct? | | | | | | | | (1) On ¹² C = 12.00 scale, the rel | ative isotopic mass of carbon-14 is 1 | 4.0 g. | | | | | | | (2) The magnitude of the relation | ve isotopic mass of an isotope is roug | ghly equal to the mass number of | | | | | | | that isotope. | | | | | | | | | 3) The relative isotopic mass of an isotope is equal to the number of neutrons in the isotope. | | | | | | | | 9 Whatsapp: 9341 0473 Website: phychembillyli.hk #### Section 02 #### @ Delta Science Education #### Microscopic World Part 1 #### 2. Fill in the blanks of the table below: | Element | Atomic number | Isotope (Relative abundance) | Relative atomic mass | |---------|---------------|------------------------------|----------------------| | | | ¹H (99.985%) | | | Н | 1 | ² H (0.015%) | | | | | ³H (Trace) | | | He | 2 | ³ He (0.000137%) | | | пе | 2 | ⁴ He (99.999863%) | | | В | 5 | ¹⁰ B (%) | 10.81 | | | 3 | ¹¹ B (%) | 10.01 | | | | ²⁴ Mg (78.99%) | | | Mg | 12 | ²⁵ Mg (10%) | | | | | Mg (11.01%) | | | CI | 17 | ³⁵ Cl (3) | | | OI . | 13 | ³⁷ Cl (1) | | Whatsapp: 9341 0473 Website: phychembillyli.hk #### Section 02 #### @ Delta Science Education #### Microscopic World Part 1 - 3. Element X occurs in nature as two isotopes, ⁷⁹X and ⁸¹X. If the relative atomic mass of X is 79.9, which of the following statements is / are correct? - A. The isotopes can be separated by chemical methods. - B. The abundance of 79X is more than the abundance of 81X. - C. The relative atomic mass is 79.9 q. - 4. An element has 3 naturally occurring isotopes ²⁰X, ²¹X and ²²X. The ratio of abundance of ²⁰X and ²²X is 2 to 1 and the relative atomic mass of X is 20.86. Calculate the % abundance of each isotope of X. Therefore, the % abundance of 5. The relative atomic mass of a natural sample of copper is 63.6. Which of the following graphs shows the relative abundance of the isotopes? A. В. C. D. Whatsapp: 9341 0473 Website: phychembillyli.hk #### Section 02 #### @ Delta Science Education #### Microscopic World Part 1 #### **Electronic arrangements of atoms** D. Electrons move round the nucleus in electron shell. Electronic arrangement = the way that the electrons in an atom is arranged Maximum number of electrons in each electron shell = | Electron shell (n) | Max number of e | |--------------------|-----------------| | First (n = 1) | | | Second (n = 2) | | | Third (n = 3) | | | Forth (n = 4) | | Whatsapp: 9341 0473 # Section 02 Microscopic World Part 1 # @ Delta Science Education ■ Electronic arrangement of the first 20 elements: | Element | Symbol | Atomic number | e [.] number | Electronic arrangement | |------------|--------|---------------|-----------------------|------------------------| | Hydrogen | | 1 | 1 | | | Helium | | 2 | 2 | | | | | | | | | Lithium | | 3 | 3 | | | Beryllium | | 4 | 4 | | | Boron | | 5 | 5 | | | Carbon | | 6 | 6 | | | Nitrogen | | 7 | 7 | | | Oxygen | | 8 | 8 | | | Fluorine | | 9 | 9 | | | Neon | | 10 | 10 | | | | | | | | | Sodium | | 11 | 11 | | | Magnesium | | 12 | 12 | | | Aluminium | | 13 | 13 | | | Silicon | | 14 | 14 | | | Phosphorus | | 15 | 15 | | | Sulphur | | 16 | 16 | | | Chlorine | | 17 | 17 | | | Argon | | 18 | 18 | | | | | | | | | Potassium | | 19 | 19 | | | Calcium | | 20 | 20 | | #### Section 02 #### @ Delta Science Education #### Microscopic World Part 1 | | Examples that you must fully understand | | | | | | | | |----|---|-------------------------|----------------|------------------|----------------|---------------|--------|---------------| | ٦. | In early 19th century, an English scientist, John Dalton, proposed the Atomic Theory. Which of the idea(s) of his | | | | | | | lea(s) of his | | | atomic theory is / are known to be incorrect by the current scientific knowledge? | | | | | | | | | | (1) All atoms of the same element are identical. | | | | | | | | | | (2) Different | elements hav | ve different t | ypes of atom: | 5. | | | | | | (3) Atoms ar | e indivisible. | | | | | | | | | (4) Atoms of | one element | always diffe | r in mass fron | n those of and | ther elemen | t., | | | | (5) All atoms | of the same | element have | the same pr | operties. Che | mical? Physic | al? | | | | (6) Chemical | reactions occ | cur when ato | ms are rearra | nged. | | | | | | (7) Atoms of | one element | cannot be co | nverted to at | oms of anoth | er element. | | | | 2. | This question | is about L ithiu | m, Sodium and | d Potassium. | | | | | | | (a) State one | difference b | etween their | electronic st | ructures. | | | | | | The have | e different n | umber of | | |] | | | | | (b) State one | similarity in | their electro | nic structures | s. | | | | | | T i I | | | | î | · | | | | | The have the same number of outermost electron shell. | (c) Explain w | hy the electr | onic arrangei | ment of Potas | ssium is 2,8,8 | ,1 instead of | 2,8,9. | 3. | Write down th | e electronic ar | rangements fo | or the following | g elements: | | | | | | | | | | | | 46 | He | | | | | | | | | | | | | Li | Ве | В | С | N | 0 | F | Ne | | | | | | | | | | | | | Na | Mg | Al | Si | P | s | CI | Ar | | | į | | 3 | | | 2 | | 2 | | | K | Ca | | | | | | | | | | | | | | | | | **Whatsapp**: 9341 0473 #### Section 02 #### @ Delta Science Education #### Microscopic World Part 1 # 2. Periodic Table - The elements are arranged in order of increasing - Periodic similarity in the properties of elements will be observed. # Examples that you must fully understand - Below shows the electron diagram of an atom of element X. Which of the following statements concerning X is / are correct? - (1) This atom contains 14 protons. - (2) X in a period 3 element. - (3) X is in group IV. - (4) The mass number of this atom is 14. - 2. The atomic number of iodine is 53. Deduce the electronic arrangement of it. #### Section 02 #### @ Delta Science Education #### Microscopic World Part 1 #### A. Period - Period (horizontal row) number = number of . - Change in physical properties of elements across a period (from left to right): 1 H 53 - Metals >> Semi-metals >> Non-metals - Atomic radius - As nuclear charge increases across a period, the between the nucleus and the electron cloud. Melting point and boiling point: - Electronegativity increases - > As atomic radius decreases, stronger attraction between and the nucleus #### Section 02 #### @ Delta Science Education properties. #### Microscopic World Part 1 | B. | Grou | 1170 | |----|------|--------| | | VIVI | -E-9-P | - Group (vertical column) number = equal to the Elements in a group show similar chemical properties: The ______ properties of an element mainly depend on ______ Elements in the same group have the same no. of outermost e⁻, so they have _____ chemical - . - Group names: | Group | Name | |--------|------| | Ĩ | | | II | | | VII | | | VIII/0 | | - Change in physical properties of elements across a group (down the group): - Metallic character increases - Atomic radius increases - Due to increases in the number of - Melting point and boiling point - Group I and II: down the group - ➤ Group VII and VIII/0: down the group - Electronegativity decreases Whatsapp: 9341 0473 #### Section 02 Microscopic World Part 1 # @ Delta Science Education # 1 # C. Group I, Alkali Metals | | Lithium | Sodium | Potassium | Rubidium | Caesium | | | | |--------------------------------|--|--|---|--------------------------|---------------|--|--|--| | | (Li) | (Na) | (K) | (Rb) | (Cs) | | | | | Electronic
arrangement | 2,1 | 2,8,1 | 2,8,8,1 | 2,8,18,8,1 | 2,8,18,18,8,1 | | | | | Appearance | Shiny when frest | nly cut but soor | in air. | - | | | | | | Soft | Can be cut by a knife. | | | | | | | | | Lower mp, bp than other metals | Lower mp and bp when compared with other metals. down the group. | | | | | | | | | Low density | Low. Li, Na and | Low. Li, Na and K can float on water. | | | | | | | | Highly reactive | Highly reactive, must be stored in paraffin oil to avoid reaction with air or water Reactivity down the group Reason: Metals react by as atomic size increases down the group distance between the outermost shell e⁻ and nucleus attraction between the outermost shell e⁻ and nucleus tendency to lose electron More reactive More reactive than alkaline earth metals (Group II) | | | | | | | | | Reaction with water | React vigorously $Na(s) + H_2O(l)$ - Metal floats; Hissing sounds; Colourless gas bubbles | Metal floats; N silvery ball; Hi Colourless ga | Metals melt into a
ssing sounds;
s bubbles; Metals
Golden yellow flame | and metal Explosive read | solution. | | | | | Reaction with halogens | React with halog $Na(s) + Cl_2(g)$ | lens to form sal | 29 | | | | | | #### Section 02 #### @ Delta Science Education #### Microscopic World Part 1 # D. Group II, Alkaline Earth Metals | | Beryllium | Magnesium | Calcium | Strontium | Barium | | | | |-------------------------------|---|--|---------------------|--------------------------------|---|--|--|--| | | (Be) | (Mg) | (Ca) | (Sr) | (Ba) | | | | | Electronic arrangement | 2,2 | 2,8,2 | 2,8,8,2 | 2,8,18,8,2 | 2,8,18,18,8,2 | | | | | Appearance | Shiny when fres | Shiny when fresh but will tarnish in air. | | | | | | | | Higher mp, bp than
Group I |) . | | | | | | | | | Denser than
Group I | All in water | All in water | | | | | | | | Less reactive than Group I | Reactivity down the group Less reactive than Reason: Metals react by losing electron As atomic size from group I to group II distance between the outermost shell e and nucleus decreases attraction between the outermost shell e and nucleus to lose electron Also, group II needs to lose outermost e instead of in group I Less reactive | | | | | | | | | Reaction with water | and metal $Ca(s) + H_2O(l) - \frac{1}{2} \int_{-\infty}^{\infty} ds ds$ | Ba can react with solution. Colourless gas to | | 7 | hydrogen test-tube water funnel calcium metal | | | | | Reaction with halogens | React with halog | gens to form salts | $s Mg(s) + Cl_2(g)$ | $g) \longrightarrow MgCl_2(s)$ | | | | | Website: phychembillyli.hk #### Section 02 # @ Delta Science Education # Microscopic World Part 1 # E. Group VII, Halogens | | Fluorine
(F) | Chlorine
(CI) | Bromine
(Br) | lodine
(I) | Astatine
(At) | | |--|--|----------------------------------|----------------------------|----------------------|------------------|--| | Electronic
arrangement | 2,7 | 2,8,7 | 2,8,18,7 | 2,8,18,18,7 | 2,8,18,32,18,7 | | | Diatomic molecule | All of them are molecules = atoms join together to be | | | | | | | Appearance (All coloured) | Pale yellow gas | Yellowish green gas | Dark red /
brown liquid | Black / purple solid | Black solid | | | Toxic | They are all toxic | (poisonous) and | smelly. | | | | | Quite low mp, bp | Mp and bp | Mp and bp down the group. | | | | | | Density | Density increase | Density increases down the group | | | | | | Reactivity | Reactivity down the group Reason: Halogens react by electron As atomic size increases down the group distance between the incoming er and nucleus attraction between the incoming er and nucleus likely to gain the incoming electron Less reactive | | | | | | | Reaction with sodium sulphite solution | All of the halogens react with sodium sulphite to give colourless products. $I_2(aq) + SO_3^{2-}(aq) + H_2O(l) {\longrightarrow} SO_4^{2-}(aq) + 2I^-(aq) + H^+(aq)$ | | | | | | 17 Website: phychembillyli.hk #### Section 02 # @ Delta Science Education #### Microscopic World Part 1 # F. Group VIII/0, Noble gases | | Helium
(He) | Neon
(Ne) | Argon
(Ar) | Krypton
(Kr) | Xenon
(Xe) | | |----------------------------------|---|--------------|---------------|-----------------|---------------|--| | Electronic | 2 | 2,8 | 2,8,8 | 2,8,18,8 | 2,8,18,18,8 | | | arrangement | Duplet Octet structure structure | | | | | | | Reactivity Monatomic molecules | They are all inert / very unreactive / very stable due to their They generally DO NOT react with other elements. All of them are molecules =atom is already enough to be stable | | | | | | | Appearance | All are colourless gases. | | | | | | | Very low mp, bp | Mp and bp increases down the group. | | | | | | | Density | Density increases down the group He and Ne are less dense than air. Ar, Kr and Xe are denser than air. | | | | | | | | Helium
(He) | Neon
(Ne) | Argon
(Ar) | |--------|--|--|--| | Uses | To fill airship, weather balloon | To fill neon lamp in advertising sign | To fill light bulb | | | ARLANDRE | PIZZA | | | Reason | as He has a density lower
than air and it is
non-flammable | as Ne can produce an
unmistakable bright
reddish-orange light in an
electric discharge tube | as Ar non-oxidizing and relatively abundant in air compared to other noble gases | #### Section 02 #### @ Delta Science Education #### Microscopic World Part 1 # Examples that you must fully understand | Nar | ne the element(s) in the Periodic Table which is / are | | | | | | |------------|--|--|--|--|--|--| | (a) | Liquid: | | | | | | | (b) | Gas: | | | | | | | (c) | Metal (one): | | | | | | | (d) | Semi-metal (one): | | | | | | | (e) | Non-metal (one): | | | | | | | (f) | Yellow solid: | | | | | | | (g) | Needed to be stored under paraffin oil (one): | | | | | | | (h) | Needed to be stored under water: | | | | | | | (i) | Used to make lilac fireworks: | | | | | | | (i) | Metal that can float on water: | | | | | | | | Diatomic molecules (one): | | | | | | | (I) | Monatomic molecules (one): | | | | | | | (m) | Having stable electronic arrangement: | | | | | | | (n) | That needs to gain e ⁻ and become stable (one): | | | | | | | (o) | That needs to lose e ⁻ and become stable (one): | | | | | | | (p) | Toxic (one): | | | | | | | (q) | Non-metal that conduct electricity: | | | | | | | (r) | Soft metal that can be cut by a knife (one): | | | | | | | (s) | Used to fill airship: | | | | | | | (t) | Having the highest boiling point across period 2: | | | | | | | (u) | The most reactive when they react together (two elements): | | | | | | #### Section 02 #### @ Delta Science Education #### Microscopic World Part 1 - 2. When move across a period, which of the following properties increase? - (1) Electronegativity - (2) Ability to attract an electron - (3) Number of outermost shell e - (4) Size of an atom - (5) Reactivity - (6) Electrical conductivity - (7) Melting point and boiling point - (8) Metallic character - 3. When move down a group, which of the following properties increase? - (1) Electronegativity - (2) Ability to attract an electron - (3) Number of outermost shell e - (4) Number of electron shell in an atom - (5) Size of an atom - (6) Reactivity - (7) Electrical conductivity - (8) Melting point and boiling point - (9) Metallic character - 4. Which of the following statements concerning noble gases is / are correct? - (1) All noble gases are inert because they have octet structure. - (2) All of them will never react with other elements. - (3) Their relative atomic masses increase down the group. - (4) They have a stable electronic arrangement. - (5) Their reactivity increases down the group. - (6) Their boiling point increases down the group. - (7) Some noble gases are coloured. - (8) They are diatomic molecules. #### Section 02 #### @ Delta Science Education #### Microscopic World Part 1 | 5. | Which of the following statements about the Periodic Table is correct? | | | | | | | |---|--|----|--|--|--|--|--| | | (1) In any group, the atomic size of elements increases with the increasing atomic number. | | | | | | | | | (2) All Group 0 elements are non-metals and all elements with one outermost shell electrons are
metals. | | | | | | | | | (3) In any periods (except Period 1), the metallic character of the elements increases with increasing
atomic number. | | | | | | | | | (4) All Period 3 elements contain three filled electron shells. | | | | | | | | | (5) Melting point of elements increases across Period 2. | | | | | | | | | (6) Elements in a group have the same number of outermost shell electrons. | | | | | | | | | (7) Elements in the Periodic Table are arranged according to increasing atomic weight. | | | | | | | | 6. | Mg and Ca have similar properties because | | | | | | | | | A. their atoms have the same atomic structure. | | | | | | | | B. their atoms have the same number of electron shells. | | | | | | | | | | C. their atoms have the same number of electrons in their outermost shells. | | | | | | | | | D. their atoms have the same electronic arrangement. | | | | | | | | 7. | This question is about Caesium (Cs). | | | | | | | | | (a) Which is more reactive? Cs or K? Explain briefly. | | | | | | | | | Both Cs and K belong to Group I. Reactivity of Group I elements |]. | | | | | | | | As Cs is K, Cs is more . | | | | | | | | | (b) Write down the equation when Cs reacts with water. | | | | | | | | | | | | | | | | | | (c) Which is more reactive? Cs or Barium (Ba)? | | | | | | | | | Reactivity of Group I elements is than the Group II elements in the same period. | | | | | | | | | Therefore, Cs, as a Group I element is than Ba which is in Group II. | | | | | | | | | (d) Which has a higher melting point? Cs or Li? | | | | | | | | | (e) Where should Cs be stored? | | | | | | | | | Cs should be stored in . | | | | | | | | | Os silvala de storea in | | | | | | | #### Section 02 #### @ Delta Science Education #### Microscopic World Part 1 - 8. Astatine is a Group VII element below iodine in the Periodic Table. Which of the following statements concerning astatine is incorrect? - A. Astatine is a solid under room conditions. - B. Astatine has 7 outermost electrons. - C. Astatine is colourless. - D. Astatine reacts with sodium. - E. Astatine molecule is diatomic. - 9. Below shows magnified figures of some substances. Describe the figures with the help of the following terms: - (i) atom, monatomic molecule, diatomic molecule, polyatomic molecule - (ii) element, compound, mixture - (iii) solid, gas - (iv) metal, non-metal - (v) give examples 10. How many elements does ammonium dichromate [(NH₄)₂Cr₂O₇] consist of? Whatsapp: 9341 0473 真・為你度身訂造